Nature – To what Extent does Genotype Predict ARVD/C Phenotype?

Add this Moment to your Passport

Learn from this moment and keep it forever.
FREE
Add To Passport

Preview

Summary

Nature – To what Extent does Genotype Predict ARVD/C Phenotype?

Genetic Basis of ARVD/C

Following the landmark discovery in 2000 that mutations in JUP, which encodes plakoglobin, was the cause of Naxos disease,12 there was rapid discovery of ARVD/C-associated mutations in each of the desmosomal genes including DSP encoding desmoplakin,18 PKP2 encoding plakophilin-2,19 DSG2 encoding desmoglein-220 and DSC2 encoding desmocollin-2.21 Cardiac desmosomes are specialised adhesion junctions composed of a symmetrical group of proteins – the cadherins, the armadillo proteins and the plakins – that provide a mechanical connection between cardiac myocytes. It is now known that up to two-thirds of ARVD/C patients have mutations in genes encoding the cardiac desmosome,22 with heterozygous radical mutations in PKP2 most prevalent among the North American and most European populations.22,23 Inheritance of desmosomal mutations typically follows an autosomal dominant pattern with incomplete penetrance and variable expressivity. However, patients with multiple mutations (compound heterozygosity and digenic) are not uncommon.24 Cases with homozygous mutations and pedigrees more reminiscent of autosomal recessive disease also occur.25,26 The reported proportion of ARVD/C patients with multiple mutations ranges widely (4–21 %)23,27 and is likely related to how stringently missense variants are adjudicated.28

Although the vast majority of reported ARVD/C-associated mutations are desmosomal (95.5 % of mutations reported in the ARVD/C Genetic Variant Database),29 extradesmosomal mutations are being identified in an increasing minority of patients. The first of these was a founder mutation in transmembrane protein 43 (TMEM43) S358L discovered among families in Newfoundland, Canada.30 More recently, mutations have been reported in genes previously associated with other cardiomyopathies and arrhythmia syndromes including desmin (DES),31 titin (TTN),32 lamin A/C (LMNA),33 phospholamban (PLN)34 and Nav1.5 (SCN5A),35 the pore-forming subunit of the voltage-gated cardiac sodium channel. These findings likely reflect clinical overlap of ARVD/C with dilated cardiomyopathy at one phenotypic extreme36 and with arrhythmia syndromes associated with sodium channel dysfunction, particularly Brugada syndrome, at the other.17 Mutations in the CTNNA3 gene coding for α T-catenin protein in the ‘area composita’, (composed of both desmosomal and adherens junctional proteins), have also recently been shown to be associated with ARVD/C.37 Finally, mutations in transforming growth factor β3 (TGFβ3)38 and the cardiac ryanodine receptor-2 (RYR2)39 have been described, although the association of mutations in these genes with an ARVD/C phenotype have not been confirmed.

The increasing recognition of mutations in extradesmosomal genes among ARVD/C patients is largely the result of advances in geneticsequencing technology (next-generation sequencing). This technology allows for comprehensive sequencing at low cost with rapid turnaround. While identification of mutations in novel ARVD/C genes is useful for both scientific discovery and clinical management, it comes with challenges associated with interpretation of sequence results. As increasing numbers of genes are sequenced in ARVD/C patients, increasing numbers of genetic variants with uncertain pathogenicity are revealed. Missense variants are a significant interpretive challenge. It is important to realise that assessing pathogenicity of genetic variants should be performed with knowledge of the background ‘genetic noise’ in a healthy population. A study by Kapplinger et al.40 focusing only on the desmosomal genes highlights the complexity. In this study of 427 putatively healthy individuals, 16 % were found to carry a rare missense variant in the desmosomal genes. (In this study the authors considered each variant exclusively observed in ARVD/C patients but absent in a large, ethnically matched, control cohort a ‘mutation’.) A recently updated ARVD/C-specific genetic variant database (http://www.arvcdatabase.info) encompassing more than 1,400 variants collating published evidence is useful for interpretation.29 Recent recommendations for adjudication of genetic variants suggest increasingly stringent criteria be used.41

Finally, there remain many ARVD/C cases with no identifiable mutation. In the largest study of ARVD/C families to date, among 439 index cases ascertained through the Johns Hopkins and Dutch Interuniversity Cardiology Institute of the Netherlands (ICIN) ARVD/C Registries, 37 % had no identifiable mutation in the desmosomal genes, PLN or TMEM43.7 Of interest, among these cases without mutations, clear evidence of familial disease (meeting ARVD/C 2010 Family History Task Force Criteria)42 was present in only one-fifth. This raises the question of whether the remaining 80 % of cases had ARVD/C caused primarily by genetic factors, a question we will return to in the latter part of the paper.

Add this Moment to your Passport

Learn from this moment and keep it forever.
FREE
Add To Passport

Target Audience

Cynthia A James holds grants sponsored by the National Society of Genetic Counselors and the Barth Syndrome Foundation. The Johns Hopkins ARVD/C Program is supported by the Dr Francis P Chiaramonte Private Foundation, the Leyla Erkan Family Fund for ARVD Research, the Dr Satish Rupal and Robin Shah ARVD Fund at Johns Hopkins, the Bogle Foundation, the Healing Hearts Foundation, the Campanella family, the Patrick J Harrison Family, the Peter French Memorial Foundation and the Wilmerding Endowments.

Learning Objectives

Loading Simple Education